
Best Practices for Repeated Measures ANOVAs of ERP Data: Reference, Regional Channels,

and Robust ANOVAs

Joseph Dien1

1 Maryland  Neuroimaging  Center,  University  of  Maryland,  8077  Greenmead,  College  Park,  MD
20742, USA. 

Short Title: ANOVA power

Dien, J. (2017). Best Practices for Repeated Measures ANOVAs of ERP Data: Reference, Regional

Channels,  and  Robust  ANOVAs.  International  Journal  of  Psychophysiology,  111(1)42-56.  (DOI:

10.1016/j.ijpsycho.2016.09.006)

©  2016.  This  manuscript  version  is  made  available  under  the  CC-BY-NC-ND  4.0  license

http://creativecommons.org/licenses/by-nc-nd/4.0/

Address for correspondence: Joseph Dien, Maryland Neuroimaging Center, University of Maryland, 

8077 Greenmead, College Park, MD 20742, USA.

Phone: 202-297-8117. E-mail: jdien07@mac.com.  URL: http://joedien.com.

mailto:jdien@mailhost.tcs.tulane.edu


Abstract

Analysis of variance (ANOVA) is a fundamental procedure for event-related potential (ERP)

research and yet there is very little guidance for best practices.  It is important for the field to develop

evidence-based best practices: 1) to minimize the Type II error rate by maximizing statistical power,

2) to minimize the Type I error rate by reducing the latitude for varying procedures, and 3) to identify

areas for further methodological improvements.  While generic treatments of ANOVA methodology

are available,  ERP datasets  have many unique  characteristics  that  must  be considered.   In  the

present  report,  a novelty oddball  dataset  was utilized as a test  case to determine whether three

aspects of  ANOVA procedures as applied to ERPs make a real-world difference:   the effects of

reference site,  regional  channels,  and robust ANOVAs.  Recommendations are provided for  best

practices in each of these areas.
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1.0 General Introduction

Event-related potentials or ERPs are scalp-recorded electrical brain activity that are time-

locked to an event of interest such as the presentation of a sound.  This method generates very rich 

datasets that present many choices for even basic analyses such as repeated measures analysis of 

variances (ANOVAs).  In a typical analysis, the researcher applies an ANOVA with within-subject 

factors for condition and electrodes and possibly time.  Between-subject factors may also be used to 

test group differences but will not be considered in the present report.  The advent of high-density 

recording montages has exacerbated this situation, providing researchers with a plethora of 

channels.

It is important for the field to develop evidence-based best practices for three reasons.  First of

all, to minimize the Type II error (missing a true effect) rate by identifying the most effective analytic 

approach.  For example, many common procedures have not been fully re-examined in light of 

technological advances such as high-density montages (approaches that were effective for three 

electrodes may not be the optimal choice for 256 electrodes).  Second, to minimize the Type I error 

(falsely detecting an effect) rate by reducing the latitude for varying procedures.  While multiple 

comparison procedures are widely used to control the number of tests performed, there are no such 

common procedures for potential Type I error rate inflation due to choosing amongst multiple analytic 

procedures (i.e., shopping around for the best p-value).  Establishing guidelines for best practices 

could help constrain such analytic choices.  Third, to identify areas for further methodological 

improvements.  The identification of weaknesses in current procedures can help guide further 

research into better ways to analyze the data.

While generic treatments of repeated measures ANOVA methodology are available, ERP 

datasets have many unique characteristics that must be considered.  A previous review of the 

average reference (Dien, 1998b) discussed how the choice of the reference site has a critical effect, 
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usually ignored, on repeated measures ANOVAs.  A later tutorial (Dien & Santuzzi, 2005) reviewed 

the logic behind repeated measures ANOVA and how it relates to ERP data, especially highlighting 

its statistical assumptions and the use of regional channels (virtual channels formed by averaging 

together a cluster of electrodes).  Both papers provided recommendations based on a detailed 

examination of the underlying principles and their ramifications but did not provide empirical 

evaluations.  This present study builds on these prior reports by empirically-based evaluation of the 

recommendations to develop evidence-based best practice guidelines.  While this report is intended 

for both beginning and experienced investigators, it will be assumed that readers have taken 

graduate level statistics.

This report evaluates three recommendations with regards to repeated measures ANOVAs of 

ERPs:  the choice of reference site, utilization of regional channels, and application of robust 

ANOVAs.  It will be demonstrated that these recommendations are worthy of consideration because 

they concern statistical choices that can have substantive effects on results.

1.1 The Example Dataset

To conduct this empirical evaluation of best practices, a real dataset was employed as a test 

case.  While simulations have the advantage that the exact nature of the signal is known, they are not

good at answering whether a procedure makes real world difference (see Beauducel & Debener, 

2003) or whether unexpected aspects of the data have an effect.  Instead, a real dataset will be used 

utilizing a very simple and well-understood paradigm where it can be said that the correct results are 

already known, based on the existing extensive literature.  The dataset will be an already published 

novelty oddball dataset (Spencer, Dien, & Donchin, 1999a; Spencer, Dien, & Donchin, 2001), which 

is already well-described.  While it is desirable to present fresh data for experimental papers (where it

can at least provide additional information about replicability), for a methodological paper like this it is 

advantageous to utilize an existing dataset so that the effects of changes in methodology between 

papers are not confounded with changes in the datasets.
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In this particular dataset, a combination of frequent standards, rare targets, and rare novel 

sounds like dog barks were presented.  It is generally accepted that this paradigm will produce both a

P300 (Donchin & Coles, 1988; Sutton, Braren, Zubin, & John, 1965), which is a parietal positivity that 

is maximal to rare targets and peaks at 300 ms or later depending on the decision time, and a P3a

(Courchesne, Hillyard, & Galambos, 1975; Polich, 2007), which is a central positivity that is maximal 

to stimuli outside the attentional channel and peaks at about 300 ms.  As revealed (Simons, Graham, 

Miles, & Chen, 2001; Spencer, Goldstein, & Donchin, 1999b; Spencer et al., 2001) by principal 

components analysis (PCA), rare targets produce a strong P300 and a weak P3a  whereas rare novel

sounds produce a weaker P300 and a strong P3a (Figure One).  This dataset was collected with 

fifteen participants with a 129-channel high density Electrical Geodesics Incorporated electrode net.

1.2 Quantifying Statistical Power

For the most part, statistical power will be measured in terms of p-values, as the most familiar

metric of effect size.  Formally speaking, statistical power (the probability of detecting an effect), the

significance criterion (alpha, the probability of a false alarm), the sample size, and the effect size (the

magnitude of the condition effect scaled in some manner by its variability) are interconnected, with

three of the parameters determining the fourth  (Cohen, 1988, p. 14).  When one holds the sample

size and the alpha criterion constant, as in the present case, effect size determines statistical power.

One can therefore utilize  effect  size measures,  of  which there are a variety  (Lakens,  2013).   In

experimental reports it is recommended to provide a measure of effect size in addition to p-values

because it  removes the influence of sample size, facilitating comparisons of studies with differing

sample sizes.  From this standpoint, a p-value can be thought of as being a combined measure of

effect  size,  sample  size,  and  assumed  sample  mean  distribution  (one  computes  an  effect  size

measure  then  generates  a  p-value  based  on  degrees  of  freedom  and  assumed  sample  mean

distribution).
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For this methodological study where one is only comparing between methods using the same

dataset there is no need to separate out the effect of sample size.  In addition, effect sizes (and

hence power) are not yet available for the robust ANOVA procedure utilized in Study Three (a robust

ANOVA  procedure  is  an  ANOVA  calculation  that  is  intended  to  be  less  susceptible  to  certain

weaknesses  of  the  standard  ANOVA  calculation  and  will  be  fully  defined  in  the  Study  Three

introduction).   In any case,  the influence of  some aspects of  the robust  ANOVA procedure (i.e.,

bootstrapping, Welch-James statistic) will be seen in the p-value (and in statistical power) but not in a

typical effect size measure.  Finally, p-values are more familiar to many readers than effect sizes.

Thus, p-value is a more useful metric than effect size for the present methodological report (although

experimental reports, where researchers will definitely be concerned with comparing across studies

with different samples sizes, should indeed present effect sizes where possible).
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2.0 Study One - Reference Choice

2.1 Study One - Introduction

One important but underappreciated influence on ANOVA results is the reference site.  

Voltages, as in electroencephalography (EEG) recordings, are measures of electrical potential (that 

is, the potential for current flow).  As such, they are relative measures that require a comparison 

between two points.  For example, a nine-volt battery has a nine volt difference between its terminals.

Between one terminal and some other location the voltage difference would be something different.  It

is not meaningful to speak of the terminal as having a voltage value in isolation.

The conventional procedure in EEG research is to specify an electrode as the reference site, 

which is to say all the other electrodes will be contrasted against it.  Since the “true” voltage is not 

known, this reference site is arbitrarily defined as being zero voltage.  Any voltage activity at the 

reference site ends up being mathematically attributed to the electrodes being compared to it (so a 

negativity at the reference site shows up as a positivity at all the other electrodes).  One can also 

mathematically rereference a dataset by the simple procedure of subtracting the waveform (X) at the 

new reference site from all the sites including itself; as a result, the new reference site will have zero 

voltage (X-X=0) and the old reference site will be an opposite sign version of the new reference site’s 

original waveform (0-X=-X).
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Typically the mastoids are used as the reference site.  It is common practice to mathematically

average the two mastoids together (i.e., mean mastoid reference); the usual justification is that doing 

so avoids hemispheric bias.  A mean mastoid rereference cannot reduce both of them to zero and so 

they will split their difference, as mirror images of each other (to ensure they sum to zero) so any 

asymmetries have not been eliminated.  The mastoids were originally chosen because they were 

distant from the recording electrodes but with today’s high-density montages this is no longer true.  

This author has heard it claimed that the mastoids are a good reference site because it can be seen 

that electrodes near the reference site are largely flat but in truth this is a false inference - these 

electrodes appear flat because they are near the designated reference site and are therefore similar 

to the location that has been arbitrarily defined as being zero voltage.
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One approach to dealing with this voltage ambiguity is the average reference (Bertrand, 

Perrin, & Pernier, 1985).  The average reference is based on the biophysical principle that a voltage 

source in an enclosed conductive surface will result in a voltage distribution that sums to zero across 

its surface.  One advantage of the average reference is that it is more true to the basic principle that 

all ERP components are (by biophysical necessity) bipolar with both a positive and a negative pole.  

The polarity labels of ERP components are determined by which pole is more prominent (higher 

magnitude and topographically focal) at the commonly used electrode locations on the top of the 

head and do not mean that the ERP components are in fact "positive" or "negative" as a label like 

"P300" or "N400" seems to imply.  A vertically oriented (meaning that the generator site or sites is 

positioned such that the maximum voltage from one pole is near the top of the head and the 

maximum voltage from the other pole is at the bottom of the head, as seen in the overall scalp 

topography) ERP component like the P300 can appear to be wholly positive using mean mastoids 

reference simply because its negative pole is near the mastoids and so all the other electrodes are 

relatively more positive compared to it (its negative waveform has been subtracted from all the other 

waveforms, resulting in an added positivity) but in truth it too is bipolar. The average reference thus 

provides a more veridical depiction of the nature of an ERP component.

These reference issues are relevant to ANOVAs of windowed measures because, again, 

voltages cannot exist in isolation.  They are always relative to another location.  Thus, when one 

performs an ANOVA on windowed voltages, they implicitly contrast the measured electrode with the 

reference site (Dien, 1998b).  This can benefit the ANOVA (improve the p-value) when one is 

measuring the voltage at one pole and the other pole is near the reference site.  If, for example, the 

experimental effect voltage at the recording electrode is +x and the voltage at the reference site is 

actually -x, the rereferencing procedure has increased the effect at the recording electrode to +2x and

one is getting twice the effect, increasing statistical power all things being equal.  Conversely, if the 

recording electrode is near the reference site then one will lose statistical power.
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It is likely that the common choice of the mastoids as the reference site has had the 

unintended consequence of favoring ERP components that are vertically oriented like the P300 or the

N400.  For example, if the reality is that the P300 is +5 microvolts at Pz and it is -4 microvolts at the 

base of the head (including the mastoids) then under mean mastoids reference it will register (in the 

waveform and thus in the windowed measure) as being +9 microvolts at Pz because rereferencing 

will add +4 microvolts to all the electrodes.  Noise at the mastoids will also be reallocated but, to the 

extent that the noise is random noise, it will cancel out with noise at Pz, resulting in a doubled signal-

to-noise.  In contrast, a horizontal ERP component like the Positive Slow Wave where the positive 

pole is in the back and the negative pole is in the front has very little presence at the mean mastoids 

and hence if the reality is +5 microvolts at Oz and -4 microvolts at Fpz and zero microvolts at the 

mastoids then with mean mastoids it would still only be +5 at Oz and therefore not get as much of a 

boost as the P300.

If one needs an unbiased reference scheme, as when a number of ERP components of 

different orientations are of interest, then the average reference may be preferable.  In the average 

reference, the effective reference point is the zero voltage isopotential line halfway between the 

recorded positive and negative poles.  It therefore always splits the difference.  In principle, it should 

not provide as much statistical power for vertically oriented ERP components like the P300 or N400 

but it should provide more to those with other orientations.
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The choice of reference site is therefore important because it directly impacts the statistical 

power of ERP analyses and yet this author cannot recall seeing an ERP paper in which the authors 

explicitly considered the possible effect of reference choice on whether their study achieved statistical

significance.  In general, researchers (including the present author) seem to have made an ongoing 

choice based on general considerations such as established practice or biophysical plausibility in the 

absence of systematic evaluation of the effect of reference choice.  Who knows how many studies 

have been dubbed failures due to lack of evidence-based guidance on this matter?  Are researchers 

who use average reference unnecessarily handicapping themselves?  Are researchers who use 

mean mastoids reference unnecessarily biasing themselves to ERP components with a vertical 

orientation like the P300 or the N400?

The mean mastoid reference and the average reference are not the only reference options.  A

possible concern with the average reference is that the underside of the head is generally 

undersampled and so taking the mean of the recording electrodes will not in fact sum to zero.  The 

degree to which it will be inaccurate is presently unclear due to the greater complexity of the bottom 

side of the head.  In any case, one proposed solution is the polar average reference effect, or PARE, 

-corrected average reference (Junghöfer, Elbert, Tucker, & Braun, 1999).  In this variant, the surface 

of the entire head is interpolated based on the measurement sites and then the average of this 

surface is used as the estimate of zero.  One possible concern with this approach is that it 

necessarily gives greater weight to the electrodes at the fringe of the electrode montage, which will 

have the greatest influence on the interpolation of the underside of the head; these fringe electrodes 

tend to be less well-anchored and thus noisier.  Whether this is a substantive concern will be 

examined as part of this report.
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An alternative that has generally been ignored in the ERP literature is the bipolar reference.  

Technically a bipolar reference is obtained by using a dedicated reference site paired to each 

recording site rather than a single common reference site.  One could in principle obtain the same 

effect by explicitly contrasting the positive and negative poles by windowing at both sites and 

subtracting them from each other.  This procedure would result in a reference-independent solution 

that would potentially provide optimal statistical power (Dien, 1998b).  One would just need to know 

the electrode locations of both poles in advance to do so a priori.  A bipolar reference is already in 

effect used for the mismatch negativity or MMN studies, where it has become customary to use a 

nose reference (which is near the positive pole of the MMN).  In principle, the Positive Slow Wave 

would probably also get a boost from using a nose reference since the pole opposite the usual 

measurement site (at the back of the head) is near the nose.

As already noted, the example will be a novelty oddball dataset previously published (Spencer

et al., 1999b; Spencer et al., 2001) and then used as an example in a more recent tutorial with an 

updated analytic procedure (Dien, 2012).  Unlike the 2012 tutorial (Dien, 2012), this report will use the

average reference as the starting point.  Doing so proved to be a good instructional example of the 

nuances of reference choice and the importance of careful attention to scalp topography.  Looking at 

both reference results, it became clear that the “Frontal Negativity” (Dien, 2012; Spencer et al., 2001) 

was actually the Positive Slow Wave (Ruchkin, Munson, & Sutton, 1982; Squires, Squires, & Hillyard, 

1975).  As it turns out, one effect of using a mean mastoid reference rather than an average 

reference with a high-density dataset is that a positivity at the mastoids is subtracted from the rest of 

the electrodes, resulting in their being more negative; as a result, the Positive Slow Wave appears to 

be a strong frontal negativity (with a weaker posterior positive pole) whereas under average reference

it appears to be a strong posterior positivity (with a weaker frontal negative pole).  The putative 

Positive Slow Wave in the 2012 report was actually the latter portion of the P3b, split in the PCA from 

the early portion of the P3b by the presence of the P3a.
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While general consensus positive peak electrodes are available from the literature for the P3a 

and P3b, the positive peak channel for the Positive Slow Wave and the negative peak channels for 

these three components are not available, so PCA will be used to provide candidate positive and 

negative peak channels for all three ERP components (keeping in mind that going forward one would 

then use these channels for a priori peak channel determination).  For consistency’s sake, these peak

latencies and channels will also be used to determine the traditional windowed measures.  

This first study will therefore examine the effects of reference on statistical power with the 

example oddball dataset.  The goal will be to determine whether reference choice actually makes a 

difference when applied to a real dataset and, if so, what choice provides the best statistical power.   

By the reasoning outlined earlier, it is hypothesized that the mean mastoid reference should provide 

stronger results than the average reference when the latter yields activity at the mastoid that is in the 

opposite direction as the peak channel and weaker results when there is mastoid activity that is in the

same direction as the peak channel.  Based on the activity at the mastoids as characterized by the 

average reference (Figure Two), it is hypothesized that the mean mastoid reference will provide 

stronger results than the average reference for the P3a, modestly stronger results for the P3b, and 

weaker results for the Positive Slow Wave.  It is also hypothesized (Dien, 1998b) that the bipolar 

reference should provide the strongest results for all the ERP components.

2.2 Study One - Methods

The P300 dataset was presented in a prior report (Spencer et al., 1999a).  In the portion of the

dataset used for the present report, fifteen participants (no participants were rejected as bad data)

performed 300 trials of an active novelty oddball task.  They were presented with frequent standard

tones (12%), rare target tones (12%), and novel environmental sounds (76%).  They were instructed

to press a button to the targets and were not given instructions regarding the novel sounds.  The data

were  recorded  using  a  129-channel  GSN200  Geodesic  Sensor  Net  (Tucker,  1993) with  Cz  as
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reference  and  were  then  low-pass  filtered  at  20  Hz,  and  baseline  corrected  using  the  150  ms

prestimulus period.  Further information is available from the original report (Spencer et al., 1999a).

Further processing was conducted using the EP Toolkit 2.5.1 (Dien, 2010b) running on Matlab

2015b under OS X 10.10.5 and 10.11.1.  The data were rereferenced to mean mastoids (the average

of e57 and e101), to average reference (the average of all 129 channels), and to PARE-corrected

average reference.  Bipolar  referencing was accomplished by subtracting the opposite sign peak

channel from the data prior to the t-test.

A two-step PCA procedure  (Dien, 2010a; Spencer et al., 1999a; Spencer et al., 2001) was

utilized to identify the peak channels for the ERP components.  The first step was a temporal PCA

using a Promax rotation with a kappa of 3 and utilizing a variance-covariance matrix (Dien, Beal, &

Berg, 2005).  Following a previous example analysis of this dataset (Dien, 2012), nine factors were

retained based on the results of a Parallel Analysis (Dien, 1998a; Horn, 1965).  For the second step,

a spatial PCA using the EEGlab (Delorme & Makeig, 2004) Infomax rotation (Bell & Sejnowski, 1995)

implementation was utilized and three factors were retained.  In order to ensure replicability of the

Infomax results, the random number generator (using the Twister option) was seeded with a zero

before each independent components analysis (ICA) procedure and the line in runica that reseeds

the  random  number  generator  was  commented  out.   The  factors  corresponding  to  the  ERP

components  of  interest  were  identified  based  on  a  priori information  about  their  characteristic

latencies and scalp topographies.  The factors are presented in Figure One so that readers may

judge for  themselves  whether  they agree.   The PCA factors were not  otherwise used except  to

determine windows and peak channels.

For  the  windowed  measures,  the  windows  of  interest  were  centered at  the  peak latency

sample  and  extended  to  the  six  samples  before  and  afterwards  (52  ms  total).   The  two-tailed

dependent measures t-tests were conducted using Matlab to compare the target cell to the standard

cell for all but the P3a, where the comparison was between the novel cell and the target cell.  The

power analyses were conducted using G*Power 3.1.9.2 (Faul, Erdfelder, Lang, & Buchner, 2007), for
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a matched pairs t-test with two-tails, alpha of .05, and power of .95.  While no standards are available

for setting an appropriate Type II error rate other than Cohen's suggestion that .80 be the minimum

acceptable, .05 (.95 power) was chosen to be consistent with the accepted Type I error rate (which

is .05).

As a further aid to interpret the results, power calculations were used to determine minimum

required sample size.

2.3 Study One - Results

The average reference was used as the starting place as it is in principle more unbiased with 

respect to scalp topography than mean mastoids.  The three relevant temporal factors (Figure One) 

had latencies of 292, 356, and 480 ms.  The 292 ms temporal factor was split into a P3a factor with a 

positive peak channel of e6 (FCz) and a negative peak channel of e70 (just to the left of O1) and an 

early P3b factor with a positive peak channel of e54 (to the left of Pz) and a negative peak channel of 

e14 (just to the right of Fp2).  The 356 ms temporal factor contained the late (majority) portion of the 

P3b with a positive peak channel of e55 (CPz) and a negative peak channel of e26 (to the left of 

Fp1).  The 480 ms temporal factor contained the Positive Slow Wave with a positive peak channel of 

e79 (to the left of P4) and a negative peak channel of e17 (nasion).

For the windowed measures, based on these factor results, four windows of interest were

specified: P3a, early P3b, late P3b, and Positive Slow Wave.  Although there is no reason to think

that the early P3b window is of theoretical interest (it should show the same effects as the late P3b) it

provides a useful example of a weak effect.  The results can be seen for all reference types in Table

One.   Table  Two  provides  the  information  on  the  effect  sizes,  as  well  as  the  mean  condition

difference and the standard deviation of the condition differences used to compute them.

A PCA based on the mean mastoids reference was also run and while, as expected (Dien,

2012), the reference scheme did affect the factor solution somewhat, the decision was made to use

the exact same windows used for the average reference measures to maintain consistency.  When
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run with windows derived from the mean mastoids PCA, the t-test results were comparable and did

not change conclusions.

Reference P3a Early P3b Late P3b Positive Slow Wave
p n p n p n p n

Average .000062 9 .038 39 .000051 9 .0000083 7
PARE .000064 9 .035 39 .000052 9 .0000084 7
Mean 

Mastoids

.000008

0

7 .0049 20 .00060 13 .000015 7

Bipolar .00027 11 .14 81 .00020 10 .0031 18

Table One.  Dependent T-test Results for Different Reference Schemes.  The p-value (p) and the

sample  size  (n)  required  to  achieve  a  power  of  .95  (in  parentheses)  are  listed  for  each  of  the

reference schemes.  In all cases there were 14 degrees of freedom.  The windowed measures were

52 ms windows centered on the each latency.   See Section 2.3 for  more information about  the

measures and how they were derived.  PARE = polar average reference effect corrected average

reference.

Reference P3a Early P3b Late P3b Positive Slow Wave
m s Dz m s Dz m s Dz m s Dz

Average 5.44 3.74 1.45 2.21 3.73 0.59 6.46 4.35 1.49 6.50 3.69 1.76
PARE 5.45 3.8 1.45 2.24 3.71 0.60 6.47 4.37 1.48 6.48 3.69 1.76
Mean

Mastoids

6.52 3.69 1.77 4.13 4.79 0.86 8.20 7.21 1.14 5.75 4.06 1.66

Bipolar 6.10 4.90 1.24 3.36 8.25 0.41 13.4

7

10.47 1.29 12.60 13.6

8

0.92

Table Two.  Effect Sizes for Different Reference Schemes.  The mean (m) of the difference scores,

their  standard  deviation  (s),  and  the  Cohen’s  Dz score  calculated  from  them  are  presented.

Conditions are Novel  minus Target  for  the P3a and Target  minus Standard for  the others.   The

windowed measures were 52 ms windows centered on the each latency.  See Section 2.3 for more
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information about the measures and how they were derived.  PARE = polar average reference effect

corrected average reference.

2.4 Study One - Discussion

As predicted, the P3a was more significant for mean mastoids than for average reference and

less significant for the Positive Slow Wave (Table One), keeping in mind the prior caveats in Section

1.2 about the use of the p-value as a stand-in for effect size.  Unexpectedly, the late P3b measure

was stronger  for  the  average reference.   Surprisingly,  the bipolar  reference results  were overall

weaker, coming in last  for  all  but  the late P3b where it  was intermediate between the other two

references.  Overall, the average reference performed well.  The PARE-average reference results did

not result in the feared increase in noise levels but also made little difference to the inferential tests.

Examination of Table Two illustrates how the reference effects were mediated not just by the

position of the reference site relative to ERP component’s scalp topography but also the quality of the

channels.  The Cohen’s Dz effect size score for a dependent measures t-test is calculated by dividing

the mean of the difference score by their  standard deviation  (Cohen,  1988,  p.  48).   This in turn

directly relates to the t-test as the t-value is simply the Dz score multiplied by the square root of the

sample size (Rosenthal, 1991).  While the reference choices generally had the expected effects on

the mean of the difference scores (the numerator), the standard deviations (the denominator) were

also  greatly  affected.   So  whether  a  given  reference  choice  overall  did  better  or  worse  was

determined by both parameters.

Looking at these two determinants of the statistical tests, it is apparent that as predicted the

mean  mastoids  reference  yielded  a  stronger  numerator  for  the  P3a,  early  P3b,  and  late  P3b

measures and a weaker numerator for the Positive Slow Wave (reflecting the nature of the activity at

the mastoids, as characterized by the average reference).  However, for the P3b measures and the

Positive Slow Wave the denominator was markedly smaller, with the result that the late P3b measure

was nonetheless more significant with the average reference.  It is not clear why the denominator for
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the P3a and the early P3b did not also improve to this same degree; it may be that the presence of

both the P3a and the P3b in this early time window handicapped the average reference in some

manner.  In any case, while the bipolar reference had the strongest mean difference (up to twice as

much), increased error variance swamped the improvement, resulting in an overall weaker effect size

across the board (compared to the average reference).  

The changes in variability largely reflect the effects of the reference channels.  As can be seen

in Figure Three, the use of the average reference overall reduced the level of noise as seen in the

baseline period.  The mean mastoid reference increased overall variability because it effectively took

the noise in the two mastoid channels and pushed them out to all the other channels.  The average

reference appears to be less noisy in part because it was at least partly successful in isolating the

mastoid electrode noise and in part because it effectively averages the reference noise level across

the entire set of electrodes.  As a demonstration of this principle, one can take the mean across the

region surrounding the two mastoids (twelve total electrodes) and use the result as the reference; in

this case one achieves a lower noise level,  although not as low as that achieved by the average

reference (all 129 electrodes), as seen in Figure Three.  In contrast, the bipolar reference especially

suffered as it relied on the noisy electrodes near the face (P3b and Positive Slow Wave) and the back

of the head (P3a).

Overall,  these  results  confirm  the proposition  (Dien  &  Santuzzi,  2005) that  the  reference

choice affects ANOVA statistical power.  As predicted based on whether one ERP pole coincided with

the reference site, the mean mastoid reference yielded a stronger P3a result but a weaker Positive

Slow Wave result than the average reference.  A new insight provided by this study is that while the

average reference has a general disadvantage of always (in effect) placing the reference halfway

between the two poles, it appears to have a general advantage of decreased overall noise levels.

Thus, the average reference actually had the advantage over the mean mastoid reference for the late

P3b even though the mean mastoid received a modest boost from mastoid site activity.
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It could also be seen that, at least for the P3b (the late part of it), a bipolar reference can yield

stronger effect sizes compared to the mean mastoids reference, although it was not stronger than the

average reference.  For specialized applications like mobile EEG or brain-computer interfaces (BCI)

where  there  may  only  be  a  handful  of  electrodes,  effect  sizes  may  particularly  benefit  from

strategically placed reference electrodes if they are designed to provide high quality data.

Finally,  at  least  for  the  present  dataset,  while  the  PARE-corrected  average  reference

(Junghöfer et al.,  1999) did not suffer from enhanced noise levels as feared, it  also did not differ

meaningfully from the results with the normal average reference.  For this reason, the remainder of

this  report  will  use  the  more  commonly  utilized  normal  average  reference,  although  the  PARE-

correction may indeed be preferable for general use.

3.0 Study Two - Channel Regions

3.1 Study Two - Introduction

The results of Study One highlighted that minimizing the standard deviation of the condition

effects can help improve the effect sizes.  As discussed previously, one way of doing so is to average

together multiple channels into a regional measure.  This procedure has the benefit of improving the

signal-to-noise ratio by effectively increasing the number of waveforms going into the average.  It also

accommodates individual differences in the peak channel location (see Figure Four), although at the

possible risk of diluting the effects in the peak channel with weaker non-peak channels.  Such an

approach has been recommended by ERP methodologists (Dien & Santuzzi, 2005; Luck, 2014).  Two

studies of test-retest reliability reported that it provided some benefit  (Baldwin, Larson, & Clayson,

2015; Huffmeijer, Bakermans-Kranenburg, Alink, & van Ijzendoorn, 2014), which means it should also

improve statistical power; the present treatment will build on these prior reports by examining this

issue in more depth and by evaluating the results in terms of the more widely used p-value statistic.
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It is therefore hypothesized that some modest benefit will be seen by using a regional channel

measure (the mean of a cluster of electrodes) rather than a single channel measure.  By this logic, it

may also be beneficial to do so as well for reference sites, both mean mastoid (as seen in Figure

Three) and bipolar.  Indeed, it may be that part of the reason the average reference performed better

than expected is that it essentially serves as a regional reference channel (with all 129 channels).  It

is also predicted that a regional channel measure centered on a peak channel (which should normally

be chosen  a priori) will  be more effective than omnibus ANOVAs using either a generic array of

regional channels, twelve regions (Dien & Santuzzi, 2005) comprised of 106 of the 129 channels, or a

single factor with individual channels as levels.  In the latter case the factor was limited to a set of 15

major 10-20 electrode sites to retain some interpretability and to keep it generally comparable to the

omnibus regional channel analysis.

3.2 Study Two - Methods

Methods were as for Study One with some additions.  The omnibus ANOVAs were conducted using

SPSS 23.  The power calculations were again conducted using G*Power, based on SPSS’s partial

eta squared output  (and using G*Power’s  SPSS effect  size type option).   The power  calculation

function for G*Power for repeated measure ANOVAs has not yet been documented and the author’s

attempt to use it resulted in nonsensical results.  All statistical tests were dependent t-tests except for

the omnibus tests, which were ANOVAs using the G-G epsilon correction  (Geisser & Greenhouse,

1958) for factors with more than two levels.  The G-G epsilon correction was chosen since it is more

conservative  (indeed  too  conservative)  than  the  alternative  H-F  epsilon  correction  (which  is  too

liberal).  

For the omnibus channels ANOVA, the factors were condition (two-levels as per the t-tests)

and electrode (fifteen levels).  For the omnibus regions ANOVA, the factors were condition (two-levels

as per the t-tests), y-axis (anterior vs. posterior), x-axis (left vs. right), and z-axis (ventral, middle,
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dorsal).  The labeling for the ANOVA factors is inspired by the Talairach coordinate system (Talairach

& Tournoux, 1988) used in MRI studies.

Regional  channels  were  computed  based  on  a  central  channel  and  the  surrounding

electrodes: P3a (5 6 7 11 12 13 107  113), early P3b (32 38 53 54 55 61 62), late P3b (32 54 55 62

80 81 129), Positive Slow Wave (62 68 78 79 80 86 87).  For the mastoid regional reference the

channels were: 50 51 56 57 58 63 97 98 100 101 102 108.  For the bipolar references, the electrodes

were: P3a (64 65 69 70 71 74 75), early P3b (8 9 14 15 17 126), late P3b (22 23 26 27 33 127 128),

Positive  Slow Wave (14 17 22 126 127).   The omnibus channels  test  relied  on standard 10-20

locations: 11 (~Fz) 25 (~F3) 34 (F7) 37 (C3) 46 (T3) 58 (T5) 60 (P3) 62 (Pz) 86 (P4) 97 (T6) 105 (C4)

109 (T4) 122 (F8) 124 (~F4) 129 (Cz).  

For the regional omnibus, the electrodes were 106 of the 129 channels: left anterior ventral

(22 26 33 39 44 45 127 128), left anterior middle (18 19 23 24 27 28 34 35 40), left anterior dorsal (7

12 13 20 21 25 29 30 36), right anterior ventral (1 8 14 115 120 121 125 126), right anterior middle (2

3 9 10 15 116 117 122 123), right anterior dorsal (4 5 107 111 112 113 118 119 124), left posterior

ventral (56 57 63 64 69 70 74 75), left posterior middle (47 50 51 58 59 65 66 71 72), left posterior

dorsal (32 38 43 48 52 53 54 60 61 67), right posterior ventral (83 89 90 95 96 100 101 108), right

posterior middle (77 84 85 91 92 97 98 102 103), and right posterior dorsal (78 79 80 81 86 87 88 93

94 99).

3.3 Study Two - Results

The results are presented in Table Three.  

Reference P3a Early P3b Late P3b Positive Slow Wave
AR-

Regional

.000063 (9) .0015 (16) .000031 (8) .000015 (8)
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Peak
MM-

Regional

Peak

.000014 (7) .0013 (15) .00081 (13) .000037 (8)

MMR-

Regional

Peak

.000073 (9) .00080 (13) .000067 (9) .0000099 (7)

Regional

Bipolar

.00078 (14) .067 (54) .000082 (10) .0018 (16)

AR-

Omnibus

Channels

C: .0034

CxE: .027

CxE: .0048 C: .0016

CxE: .00000026

CxE: .000000097

AR-

Omnibus

Regions

C: .0080

CxZ: .0031

CxYxZ: .0050

C: .027

CxZ: .037

C: .00043

CxY: .0013

CxZ: .00012

C: .0041

CxY: .000080

CxZ: .0070

MM-

Omnibus

Channels

C: .0015

CxE: .027

C: .029

CxE: .0048

CxE: .00000026 CxE: .000000097

MM-

Omnibus

Regions

CxZ: .0031

CxYxZ: .0050

C: .027

CxZ: .037

CxY: .0013

CxZ: .00012

CxY: .000080

CxZ: .0070

Table Three.  T-test and ANOVA Results for Different Regional Electrode Schemes.  The p-value and

the sample  size  required  to  achieve  a  power  of  .95  (in  parentheses)  are  listed  for  each  of  the

electrode  schemes.   Sample  size  computations  were  not  available  for  ANOVAs.   AR=average

reference.   MM=mean  mastoid  reference.   MMR=mean  mastoid  region  reference.   C=cell.

E=electrode.  X=left vs. right electrodes.  Y=anterior vs. posterior electrodes.  Z=dorsal vs. middle vs.

ventral electrodes.  For ANOVAs, only significant effects involving the condition factor are listed.
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3.4 Study Two - Discussion

In general,  the regional channels did not consistently improve the results compared to the

peak channel results.  Furthermore, the pattern of differences between the average reference and

mean mastoids reference became muddled.  The regional peak channels did provide better p-values

than the omnibus measures as expected.  The average reference continued to perform comparably

to the mean mastoid regional reference.

The regional channel approach did not have the expected consistent beneficial effects.  Close

examination of the data suggested that although the error variance (the denominator of the effect

size) did generally decrease, the effect on the numerator was mixed.  Presumably the reason is that

the additional channels sometimes had an overall detrimental effect, diluting the desired signal.  This

was especially evident for the regional mean mastoid reference for the P3a, compared to the regular

mean mastoid reference.

The regional peak approach did improve results over the single peak approach somewhat for

the average reference, notably for the early P3b measure, but  was largely  a wash for  the mean

mastoids.  A meaningful improvement was seen for the mean mastoid regional peak approach for all

but the P3a measure. Using regional channels at both ends of the bipolar approach also yielded

modest improvements for all but the P3a measure.  The mean mastoid regional reference yielded

some improvements for the early P3b measure over the conventional mean mastoid reference and

did better than the average reference for two measures and worse for the other two.  So overall it did

appear that regional channels yielded some modest net improvement compared to single-electrode

measures.  Of some concern is that the expected differences between the reference schemes (mean

mastoid reference better with P3a and average reference better with Positive Slow Wave) became

more muddled,  suggestive  that  the  use of  regional  channels  complicated  matters  by introducing

additional factors (e.g., degree of presence of the ERP component in the non-peak channels).
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Turning  to  the  omnibus  measures,  they  yielded  lower  p-values  as  expected.   Targeted

regional channels generally provided stronger results than the untargeted omnibus regional channel

approach.   The  reference  choice  was  essentially  irrelevant  for  the  omnibus  regional  channel

approach.  The reference did not affect interactions including channel factors due to the way the

statistic is computed, which essentially rereferences the data to average reference (based on the

channels included in the ANOVA).  With regard to the condition main effect, the average reference

results are somewhat arbitrary insofar as it  is  dependent  on what channels were included in  the

omnibus test; if every channel was included then the condition main effect would always zero out (the

channels would sum to zero in each condition).  Conversely, the condition main effect for the mean

mastoid omnibus regional channel approach reflects the extent to which the mean of all the channels

differ  in each condition,  which from the standpoint  of  biophysics is probably  mostly reflecting the

condition effects in the mastoid region (which has been rereferenced to all the other channels).  For

omnibus regional ANOVAs, it seems best to just ignore the condition main effect (at least for high-

density montages,  where an average reference is justifiable)  in favor of interaction effects, which

have the advantages of being reference-independent,  more statistically  powerful  (at least  for this

dataset), and more informative about scalp topography.

Thus  far  there  seems to  be  a  small  advantage  for  the  regional  peak  average  reference

approach as both the involvement of multiple channels in both the regional peak and the reference

computation has generally reduced noise levels.  This observation was consistent with prior reports

(Baldwin et  al.,  2015;  Huffmeijer  et al.,  2014) that used largely the same hardware and average

reference (PARE-corrected average reference in the former case) to examine test-retest reliability

effects, although the present findings introduce caveats regarding the effects of reference scheme

and the effects of scalp topography and were overall less clearly positive.

24



ANOVA Power

4.0 Study Three – Robust ANOVA

4.1 Study Three - Introduction

Conventional ANOVAs (and t-tests, which are a special case of ANOVAs) are susceptible to

three issues: deviations from normality, sensitivity to outliers, and unequal variances. One  way  of

addressing these issues is to use a robust ANOVA procedure.  One such implementation (Keselman,

Wilcox, & Lix, 2003; Lix & Keselman, 1995; Wilcox & Keselman, 2003) is computed in the same

manner  as  a  conventional  ANOVA  but  has  modifications  to  address  the  three  issues.   This

implementation is available through the EP Toolkit, based on SAS/IML code provided by Lisa Lix.  In

a prior informal comparison (Dien, Franklin, & May, 2006), it provided results comparable to that of

conventional ANOVAs.

The first ANOVA issue is that they assume normality, relying on the Central Limit Theorem

(Fischer, 2010) to assure that sample means from the population can be assumed to be normally

distributed even if the population itself is not; however, the general consensus is that the theorem

applies only when the sample size is at least thirty (e.g., Gravetter & Wallnau, 1992), which is often

not the case in ERP studies, as in the present dataset.  As seen in Figure Five-a, the windowed

measurements  in  the  present  oddball  dataset  are  not  normally  distributed,  indicative  that  the

population distribution is likely not normally distributed either; thus, for this data one is indeed relying

on the Central Limit Theorem to ensure that the sample means are normally distributed.  Not only

does the present data only have fifteen observations, the Central Limit Theorem does not actually

guarantee normality even for samples of larger than thirty (Bradley, 1980; Westfall & Young, 1993); in

the present case, the Central Limit Theorem performs reasonably well but does lose some power due

to a failure to fully achieve the assumed normal distribution, as can be seen in Figure Five-b.  If the

sample mean distribution fully achieved normality, the histogram would conform to the brown normal

line and 5% of the distribution would fall  into the tails beyond the alpha threshold.   The number

provided below each histogram shows the actual  percentage falling  into the tails  and hence the
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degree to which the lack of normality has affected the test results.  Numbers less than .05 indicate a

loss  of  power  by  the  conventional  ANOVA  due  to  a  mismatch  between  the  expected  normal

distribution and the actual distribution (as estimated by the bootstrapping procedure).

The  robust  ANOVA  procedure  addresses  such  non-normal  distributions  by  using

bootstrapping  (Efron,  1979;  Wilcox,  2010),  a method to estimate the shape of  the sample mean

distribution by repeatedly drawing subsets from the sample and compiling the results(Efron, 1979;

Davidson  &  MacKinnon,  2000).   In  effect,  the  members  of  the  sample  are  considered  to  be

representative of the population distribution (with unlimited copies of each observation) and then a

series of random simulated samples are generated by drawing from the sample with replacement

(allowing for multiple draws of the copies of an observation) to empirically generate an estimate of the

actual sample mean distribution.  Thus the bootstrapping procedure will have some degree of random

variability  that  will  be  reflected  in  the  resulting  p-value.   The  more  simulation  runs  in  the

bootstrapping,  the  more  stable  the  resulting  estimate  but  also  the  more  time-consuming  the

procedure.   This  is  an  issue  inherent  in  any  procedure  with  a  stochastic  element,  including

independent components analysis (Dien, Khoe, & Mangun, 2007).

An interrelated concern is that of random number generation.  Computers are not capable of

generating truly random numbers.  Instead they use pseudo-random number generation in which a

starting number, a seed, is subjected to a set of mathematical operations that result in numbers that

are not predictable by humans  (see Deng & Lin, 2000; Park & Miller, 1988).  This seed is usually

obtained either from the millisecond clock time (for varying results) or from the user (to allow for

replications).  The fact that statistical significance may depend on a wholly arbitrary choice of seed

should be of clear concern to any empirical researcher and gives new meaning to the concept of

"massaging the data" if one can simply try out different seeds (or keep rerunning the analysis if the

seed is provided by the clock time) until one obtains significance.  The question then is whether this

unavoidable randomness is large enough to affect results and, if so, whether it can be managed to an

acceptable degree.  This is a question that has not thus far been addressed by the developers of the
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robust  ANOVA  procedure  as  they  have  been  focused  on  developing  the  deeper  mathematical

aspects of the technique and yet this should be of critical concern to any applied researchers who

might be considering adopting it in their work.

One question of interest for the present report is how many bootstrapping simulations would

be appropriate for ERP data.  While bootstrapping has been extensively applied to ERP data for the

purpose of  analyzing within-subject  effects  (Di  Nocera & Ferlazzo,  2000;  Rosenfeld  et  al.,  2008;

Wasserman & Bockenholt, 1989), the number of simulations required has not been systematically

evaluated for the purpose of replacing conventional between-subject ANOVAs.  The number 599 has

been recommended for bootstrapping simulation runs  (Wilcox, 2010).  The reasoning was in part

because to be an exact test it has to yield an integer number when entered into the equation: a *

(ß+1)  where a  is  the alpha level  and ß is  the number  of  simulation  runs  (Hall,  1986;  Racine  &

Mackinnon, 2007).  The effect of increasing numbers of simulation runs will be examined in order to

identify an optimal setting.  This question can also be posed as an evaluation of how robust the

results are to changes in the starting seed.

The second ANOVA issue is being overly sensitive to outliers.  As can be seen in Figure Six,

while  the oddball  ERP components replicate quite reliably  at  the group level,  there is substantial

variability in the individual subject averages.  An overly good participant, as well as an overly bad

one, can result in the Type I error of missing a true effect, because it will increase the error variance

even more than the condition effect  (Jolliffe & Lukudu, 1993; Wilcox, 2010).  The present  robust

ANOVA  procedure  addresses  outliers  by  the  use  of  trimmed  means  and  winsorized

variances/covariances.   For  trimmed  means,  some  percentage  of  the  smallest  and  the  largest

observations in each cell is dropped, with a 20% rate (40% total) being recommended (Keselman,

Algina,  Lix,  Wilcox,  &  Deering,  2008;  Wilcox,  2010;  Wilcox,  2012).   This  procedure  drops  the

anomalous  values,  resulting  in  a  more robust  estimate  of  the  central  tendency  of  the  cell.   To

accomplish the same for variances and covariances, the n extreme observations can be replaced

with the value of the n-1 observation in a process termed winsorizing (Dixon & Yuen, 1974).
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The potential drawback is that this process also reduces the degrees of freedom, in effect

reducing the size of the sample.  The cost-benefit ratio depends on the amount of trimming and the

extent to which it  is eliminating non-outliers versus outliers.  This is another concern that will  be

examined next in the context of a typical ERP dataset. 

The third ANOVA issue is that they assume homogeneity of variance and covariance.  For

within-subject  factors,  the  standard  practice  for  conventional  univariate  ANOVAs  is  to  apply  an

epsilon correction factor to adjust the degrees of freedom (Box, 1954; Geisser & Greenhouse, 1958;

Huynh, 1978), but the common ones have the known drawback  (Maxwell & Arvey, 1982) that they

are either overly conservative (G-G) or are overly liberal  (H-F).  Furthermore, for between-subject

tests, the conventional test statistic is not suitable when group sizes are unequal  (Bradley, 1980;

Ramsey,  1980).   An  approach  for  addressing  this  problem  is  to  use  the  Welch-James  statistic

(Johansen, 1980; Welch, 1938; Welch, 1947; Welch, 1951), which does not make the assumption of

equal variances.  This technique has been extended to within-group factors (Keselman, Carriere, &

Lix, 1993; Lix & Keselman, 1995).  Many statisticians  (Best & Rayner, 1987; Fagerland & Sandvik,

2009; Ruxton, 2006) recommend routinely using the Welch-James statistic over the Student’s t-test

(and its ANOVA extensions presumably) as it performs comparably in the case of equal variances

while being more robust to cases of unequal variances.  There does not appear to be any notable

drawback to using this statistic, but it will be of interest to see how results compare to that of the

standard ANOVA procedure.  Note that whereas the standard practice for conventional within-subject

ANOVAs is to present the epsilon correction factor and the uncorrected degrees of freedom, the

standard practice for robust ANOVAs is to present the corrected degrees of freedom.

Thus, this study will examine the effects of some robust ANOVA parameters (trimming levels,

number of bootstrapping runs, effect of random seeds) to determine optimal settings, compare the

performance of robust ANOVAs to conventional inferential tests with this ERP dataset, and examine

effects of  outlier  ERP observations in  general.   It  is  hypothesized that  robust  ANOVAs will  yield

sufficiently substantial differences from conventional ANOVAs (presumably beneficial) that it makes
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sense  to  consider  their  usage  despite  the  difficulties  posed  by  their  absence  from  commercial

statistics packages.

4.2 Study Three - Methods

In addition to the methods used in Study Two, robust ANOVA procedures were applied.  They

were carried out via the EP Toolkit’s Matlab implementation of the SAS/IML code posted by Lisa Lix

(http://homepage.usask.ca/~lml321/SAS_Programs.html).   Power  calculations  were  not  available

since the effect sizes presented by the SAS/IML code are only intended for between-group contrasts

and  should  be  ignored  for  within-group  contrasts  (personal  communication,  Lisa  Lix,  December

2015).

For the purpose of investigating the effects of the robust ANOVA parameters, the average

reference regional  channel  measure was used for  simplicity’s  sake.  Variability was measured in

terms of two times the standard deviation.  As discussed in Section 4.4, twice the standard deviation

provides a 95.45% confidence interval that can be used to judge whether the observed range of p-

values still meets the alpha criterion level of .05 .  According to this proposal, if the full range of the

confidence interval (e.g., .01 +/- .002) meets the .05 alpha threshold, then the significance criterion is

considered to be fulfilled.  In effect, the alpha threshold is reduced by twice the standard deviation of

the p-values (e.g., .05 - .002 = .0498).

To  examine  the  effects  of  number  of  bootstrapping  runs,  t-tests  were  run  on  the  four

measures  with  99  to  899  bootstrapping  simulations  runs  in  increments  of  100,  999  to  8999  in

increments of 1000, and 9,999 to 99,999 in increments of 10,000.  Eleven repetitions were made at

each  level,  with  seeds  for  the  pseudo-random  number  generator  running  from 100  to  1,100  in

increments of 100.

To examine more deeply the range of random variability, 1,000 seeds from 1 to 1,000 were

used for each of the t-tests on the four measures using 4,999 bootstrapping simulation runs.
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4.3 Study Three – Results

For the four regional peak measures, the improvement in p-value variability seemed to start

leveling out at about 4,999 simulation runs (Figure Seven).  At this level, two standard deviations of

the p-value variability were:  P3a (0.0013), early P3b (0.0015), late P3b (0.0008), and Positive Slow

Wave (0.0004).  The elapsed time for these eleven repetitions on a Mac Pro with a 6-core 3.33 GHz

Intel Xeon CPU was about 1.5 seconds.

In order to have a better sense of the potential variability due to seed choice, 1,000 seed

values were utilized at  the 4,999 simulation runs level.   Variability  of  the p-values (two standard

deviations)  was  comparable  across  the  measures:  P3a  (0.0012),  early  P3b  (0.0017),  late  P3b

(0.0007), and Positive Slow Wave (0.0005).  Or posed in terms of range: P3a (0.0002-0.0038), early

P3b (0.0012-0.0070), late P3b (0-0.0022), and Positive Slow Wave (0-0.0012).

The effects of trimming levels on the four average reference regional channel measures is

reported, using 4,999 simulation runs and the median p-value of eleven repetitions, in Table Four.

Examination  of  the  numerator  and  denominator  of  the  effect  size  revealed  no  trend  for  the

denominator but a clear trend in the numerator.  The dependent measures t-test was computed with

both difference scores and with separate paired scores as the trimming procedure interacts with

these two cases differently.

%Tri

m

0 (15) .07 (13) .13 (11) .20 (9) .27 (7)

d p d p d p d p d p
P3a 0.00

16

0.00

16

0.00

24

0.00

78

0.00

78

0.03

3

0.00

54

0.07

3

0.01

94

0.04

3
3.9/.70 3.7/.69 3.6/.69 3.5/.61 3.4/.65

Early

P3b

0.00

36

0.00

36

0.00

60

0.00

58

0.02

2

0.02

5

0.07

0

0.04

1

0.12 0.045

2.8/.71 2.7/.60 2.6/.66 2.5/.72 2.3/.84
Late

P3b

0.00

06

0.00

06

0.00

34

0.00

26

0.00

32

0.00

14

0.00

58

0.00

20

0.03

1

0.011
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5.8/.97 5.7/1.1 5.4/.99 5.2/.96 5.2/1.1
Posit

ive

Slow

Wav

e

0.00

02

0.00

02

0.00

12

0.00

08

0.00

30

0.00

32

0.00

96

0.00

60

0.00

72

0.014

6.0/.93 5.9/1.1 5.8/1.2 5.6/1.2 5.4/.90

Table Four.  Effects of Trimming Levels on the Four Regional Channel Measures.  The top row is the

%age trimming and the number of resulting observations in parentheses.  The median p-value of

eleven repetitions is reported for a test of difference scores (d) and then for a test of paired scores

(p).  In parentheses is the effect size numerator and denominator for the difference scores.  

For a more fine-grained examination of the effects of each observation on the final p-value,

leave-one-out ANOVAs were computed for each observation of the four measures (Figure Eight).  It

can  be  seen  how  in  general  dropping  the  middlemost  observations  tended  to  have  the  most

detrimental effect whereas dropping the extremes resulted in lesser effects.  Dropping the strongest

P3a effect (4.2 microvolts) actually improved the p-value (.0002) over retaining it (.0016).

Based on these findings, the four measures were analyzed with robust t-test and ANOVAs.

Reference P3a Early P3b Late P3b Positive  Slow

Wave
AR-Regional

Peak

.00160 .0036 .00060 .00020

MM-Regional

Peak

.000000 .0048 .00040 .0016

MMR-Regional

Peak

.000000 .0080 .00020 .0016

Regional Bipolar .00080 .068 .00080 .0022
AR-Omnibus

Channels

none none none none

AR-Omnibus

Regions

C: .012

CxYxZ: .057

CxZ: .050* C: .013

CxY: .0030

C: .0058

CxY: .000000
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CxZ: .0050 CxZ: .018

CxYxZ: .046*
MM-Omnibus

Channels

none none none none

MM-Omnibus

Regions

CxYxZ: .057 C: .023

CxZ: .050*

CxY: .0030

CxZ: .0050

CxY: .000000

CxZ: .018

CxYxZ: .046*

Table Five.  Robust T-test and ANOVA Results for Different Regional Electrode Schemes.  The p-

value is listed for each of the electrode schemes.  Sample size computations were not available for

robust  ANOVAs.   AR=average  reference.   MM=mean  mastoid  reference.   MMR=mean  mastoid

region  reference.   C=cell.   E=electrode.   X=left  vs.  right  electrodes.   Y=anterior  vs.  posterior

electrodes.  Z=dorsal vs. middle vs. ventral electrodes.  Only significant effects including the condition

factor are listed.  *=2 x standard deviation of replications failed to confirm.  “none” means that no

results are available because the computation failed due to near-singularity.

4.4 Study Three - Discussion

First, an approach for mitigating p-value variability was determined.  Then, robust ANOVAs

were applied to the dataset and compared with the results using conventional ANOVAs.  Overall,

results  suggested that  while  the p-values were weaker  than with  the conventional  ANOVAs,  the

pattern of results were also more in line with expectations, suggesting that these p-values were truer

to the data.

Systematic  examination of  the robust  ANOVA output  confirmed that  variability  of  p-values

from the bootstrapping procedure is not so great as to preclude its use but is sufficiently large that it

needs to be managed.  The results suggest that 4,999 bootstrapping simulation runs might be a

better  choice than 699  (Wilcox,  2010), providing an acceptable level  of  p-value variability for the

present typical ERP dataset while being sufficiently rapid.  Even so, there was still some amount of
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variability.   Two standard deviations of the p-value variability for the four measures was at worst

0.0015, meaning that for most tests it should be well below the alpha threshold.

Although the presence of such p-value variability is somewhat unsettling, at least it is explicit

and can be managed; the alternative is to accept, in principle, a deterministic conventional ANOVA

procedure with unknown error.  Based on these observations, the approach taken in this approach

was to run the analysis eleven times using a standard set of seeds, reporting the median value, and

confirming that the p-value still meets the alpha threshold at double the standard deviation.  Failure to

confirm  has  been  treated  as  a  borderline  significant  effect.   Other  more  complex  approaches

(Andrews  &  Buchinsky,  1998;  Davidson  &  MacKinnon,  2000) have  been  proposed  and  can  be

evaluated in the future.

It  was determined that at  least for  a typical  ERP dataset such as this,  the 20% trimming

recommended elsewhere (Wilcox, 2010) was definitely not beneficial.  Even a modest 6% trimming

(two participants out of the full fifteen) resulted in a loss of statistical power.  Closer examination of

the results suggests that the loss of power is due to a combination of loss of degrees of freedom and

a reduction of the effect size numerator.  While trimming would be expected to have a neutral effect

on a symmetrical distribution, the present data had a negative skew (Figure Five) that resulted in a

net loss to the mean condition difference.  Furthermore, although loss of the largest observation can

have an overall beneficial effect by reducing the denominator variance (Figure Eight), it appears that

again the negative skew meant that the accompanying loss of the smallest observation outweighed

the benefits.  While more investigation is called for, it is suggested that no more than 5% trimming be

used for typical ERP datasets, rounded down so that for samples smaller than twenty no trimming is

performed at all.  There is also no clear pattern on whether the trimming procedure is better applied

to a t-test of two separate values or of a single difference score.

Although  the  overall  robust  ANOVA  p-values  were  not  as  significant  as  those  from  the

conventional ANOVAs, the pattern was closer to the expected pattern, suggesting that the robust

ANOVA values were indeed more accurate or at least more readily interpretable.  The mean mastoid
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reference  and  the regional  mean mastoid  reference  results  showed a  stronger  sensitivity  to  the

orientation of the ERP components, with more significance for the vertical P3a and less significance

for the horizontal  Positive Slow Wave, than was seen for the average reference.   This predicted

pattern of results was stronger for the robust ANOVA (Table Five) than that for the conventional

ANOVA (Table Three).  Also notable is that the mean mastoid regional reference did not display the

same benefit for the robust ANOVA, perhaps showing that the robust ANOVA addressed the same

error variance addressed by the regional reference.  Although the apparent loss of statistical power is

unfortunate, if indeed it was simply being more accurate, then in principle it could go either way and

for other datasets one could find the opposite pattern.

6.0 General Discussion

Overall,  this  author  recommends  using  robust  ANOVAs  as  protection  against  spurious

findings, even if there is some loss of statistical power.  Furthermore, the results suggest that at least

for a high-density montage, average reference provides an approach that is relatively unbiased with

respect to ERP component orientation while providing reasonable statistical sensitivity.  In part this is

because it effectively provides a regional reference channel, which is less noisy since it averages

together  multiple  channels.   Where  statistical  sensitivity  is  paramount  and  the  ERP  component

orientation is favorable (i.e., vertically oriented), a mean mastoid reference can be deployed, ideally

using regional mastoid channels.  Of course, there are other considerations beyond statistical power

when making a reference choice (Dien, 1998b).

As for channel arrangements, the regional peak channel approach provided minimal benefit

over that of a single peak channel, but was at least overall comparable and provides some insurance

against modest inaccuracies in the a priori choice of a peak channel and bad channels.  In general,

when it  is possible to determine  a priori the location of the peak channels,  then a regional peak

channel  seems better  than an exploratory omnibus regional  channel  approach.   When using an

omnibus  regional  channel  approach,  the  main  effect  should  be  ignored.   Regardless,  bipolar
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arrangements should be avoided unless both peaks are known to be located in low noise electrode

regions, in which case it would in principle be the best choice, or unless the hardware is limited to a

handful of carefully situated electrodes.

An alternative approach not addressed herein is that of PCA.  Instead of applying ANOVAs to

a windowed measure one can use PCA to generate dependent measures (factor scores) and apply

ANOVAs to them.  Given the complexities of the PCA of ERPs (Dien, 2006; Dien, 2010a; Dien, 2012;

Dien, 1998a; Dien et al., 2005; Dien et al., 2007), this author generally recommends using PCA as a

complement to windowed measures rather than as a replacement.

A caveat regarding these recommendations is that they were limited to the available hardware

(a high-density 128-channel EGI system).  Other EEG systems may very well have characteristics

that would necessitate different conclusions.  For example, some systems are designed to ensure

especially  high quality recordings from the mastoid electrodes, which is not the case for the EGI

system (which  is  instead  optimized  for  rapid  high-density  montages  that  are  well  suited  for  the

average reference).  In general, the recommendations regarding regional channels arrangements and

average reference are likely to be most appropriate for high-density montages.  The present report

provides a template that researchers can use to evaluate their own systems.

The present conclusions were also limited by the nature of the example dataset.  It is quite

possible that ERP components with other scalp topographies or statistical parameters might display

differing  characteristics.   It  would  therefore  be  prudent  for  researchers  to  conduct  their  own

comparisons, using the present report as a guide.  One might expect that just as MMN researchers

have found it most effective to standardize on a nose-reference, other ERP components might be

best studied with reference sites customized for their particular topography.  While there is some

merit to using a standardized reference site to verify what ERP components one is observing (as

illustrated by the "Frontal Negativity" in the present dataset), once that has been done (perhaps in a

figure)  there  is  no  reason  not  to  customize  the  reference  choice  to  optimize  statistical  power,

especially when studying one of the smaller ERP components.  While the majority of ERP studies
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have focused on large robust ERP components like the P300 and the N400, neuroimaging studies

have graphically revealed the extent to which such a simple approach fails to recognize the richness

of the neural systems.  For example, it is well-known that the lateral surface of the temporal lobes

have a central role in language comprehension and yet a focus on mean mastoids reference is less

likely to detect signals emanating from this region  (Dien, 2009) since the reference site is located

close by (reference choice will reallocate effects at the reference sites to the other electrodes rather

than eliminating them but will result in a diffuse topography that will be easier to overlook).  Average

reference  may be best  (for  high-density  montages)  when  a  number  of  ERP components  are  of

interest as a general compromise while customized references (taking into account both electrode

montage characteristics and ERP scalp topography) may be better when a single ERP component is

the focus of interest.

The present report's conclusions were also limited by the use of a real dataset rather than a

simulated dataset.  Simulated datasets have the advantage that the true answer is known, but are

limited by the degree to which they are truly representative of real datasets (Beauducel & Debener,

2003).  Thus, the finding that channel noise was an important contributor to the results might have

escaped notice in an artificial dataset.  On the other hand, since the true nature of the experimental

effects is not exactly known, it cannot be known for certain that an improvement in the p-values is

always indicative of a more accurate procedure.  What can be said for certain is that the novelty

oddball  paradigm is  well  known  to  produce  P3a,  P3b,  and  Positive  Slow  Wave  effects  and  so

significance should be obtained.  It can also be said that where a robust statistic resulted in a less

significant p-value, it is at the least more conservative than a conventional ANOVA and by design

such a difference should reflect greater statistical accuracy.  The important observation with respect

to the present robust ANOVA results is that even when the p-levels were worse, the increased rigor

did not come at an undue cost to statistical power.

36



ANOVA Power

7.0 Conclusions

In conclusion, this report illustrates how decisions about how an ANOVA is applied to ERP 

data can have substantial effects on the statistical power and thus whether true effects are detected.  

It has been demonstrated how the choice of reference can affect the data and guidance has been 

provided under what conditions the mean mastoids or the average reference might be appropriate for

obtaining optimal results.  Evidence has been provided on the effects of different options for 

aggregating channels and how they might affect the results.  Finally, the argument has been made for

using robust ANOVA statistics, with the caution that doing so may reduce statistical power even as it 

protects against spurious results, and suggestions have been made on the optimal settings for doing 

so (i.e., number of bootstrap runs, determining the variability of the p-values and reducing the alpha 

threshold accordingly, degree of trimming).  Regardless, it is recommended that researchers be 

consistent in their analysis procedure across studies, and to justify deviations from it, to avoid the 

appearance of massaging the data.

Figure Legends
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Figure One.  ERP components as characterized by a two-step PCA.  This temporo-spatial PCA of

the average reference data displays the four factors of interest.  These were then used as the basis

for the four ERP measures used throughout this report.  The white dot indicates the positive peak

channel.  The P3a and the early P3b were derived from different spatial factors of the same temporal

factor.

Figure Two.  Waveforms at the mastoids and peak channels for the four measures.  The Maps

present  the scalp topography of  the four measures (corresponding to the Novel-Target  and the

Target-Standard difference waves) at the peak time point, as characterized by the two-step PCA of

the average reference dataset.   The black arrow indicates the location of the mastoid electrode.
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LM=left mastoid.  RM=right mastoid.  The last row of waveforms are those of the peak channels.

The scale of the figures are -6 to +6 µv.  The zero isopotential line in the scalp maps is light blue.
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Figure Three.  Topographical map of noise levels in the baseline period.  The Maps present the

mean of the standard deviation of the voltages across the 152 ms period of the individual subject

averages (corresponding to the Novel-Target and the Target-Standard difference waves).  The mean

across the entire set of electrodes is also presented beneath each topographical map.  The Target-

Standard map is overall less noisy as more trials were included in the Standard averages.

Figure Four.  Variability of peak channels of the four measures.  Figures show the scalp topography

of the difference waves (novel-target for P3a, target-standard for the other three) collapsed across

the window for each average reference grand average effect.  The white circle shows the extent of

the regional channels.  The peak subject channels (out of those in the channel region) is indicated
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with a red dot whose size is proportional to the number of peak channels at that electrode.  Only

channels within the regional channel region are considered for this figure; the overall peak channel is

often not within the regional channel region.

Figure  Five.   Histogram of  sample  distributions.   The histograms present  the  difference scores

(novel-target for P3a, target-standard for the other three) for the average reference regional peak

channel.   The  first  line  (a)  consists  of  the  sample  scores.   The  red  line  indicates  the  normal

distribution expected by the conventional ANOVA.  The second line (b) consists of the bootstrap

estimate of the sample distribution based on resampling of the sample data with an n of 30 (which is

the minimum number often cited as necessary for the Central Limit Theorem to apply).  The black

bars indicate the .05 alpha threshold based on the conventional ANOVA procedure.  The number

beneath  these  graphs  indicates  the  proportion  of  the  bootstrapped  samples  that  meet  the

conventional alpha threshold of .05.  
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Figure Six.  Difference waves of the four ERP measures.  The difference waves (novel-target for

P3a, target-standard for the other three) are the average of the channels comprising the average

reference regional channels.  The two lines indicate the boundaries of the measure’s window.

Figure Seven.  Variability of p-values versus number of bootstrap simulation runs.  For the four

average reference regional  channel  measures,  the  variability  of  eleven repetitions  of  the robust

ANOVA at different numbers of bootstrapping simulations runs, expressed as twice the standard

deviation.

Figure Eight.  Leverage plots for the observations of each measure.  For the four average reference

regional channel measures, each observation’s condition effect (x-axis) is plotted against the p-value

44



ANOVA Power

(y-axis) obtained when it is dropped from the robust ANOVA (median p-value of eleven repetitions,

4,999  simulation  runs,  no  trimming).   The  red  line  is  the  best  fit  to  the  observations  (using  a

smoothing  spline  with  a  lambda  of  1,  a  parameter  controlling  the  degree  to  which  the  line  is

smoothed).
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